metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(2,2'-bipyridine- $\kappa^2 N, N'$)bis(5chlorosalicylato- κO)zinc(II)

Decai Wen,* Honggui Ta, Chunlong Zhong, Tianyang Xie and Linhua Wu

Department of Chemistry, Longyan University, Longyan, Fujian 364000, People's Republic of China

Correspondence e-mail: wendecai1227@yahoo.com.cn

Received 16 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.094; data-to-parameter ratio = 14.4.

In the title complex, $[Zn(C_7H_4ClO_3)_2(C_{10}H_8N_2)(H_2O)]$, the Zn^{II} atom is coordinated by two 5-chlorosalicylate ligands, one 2,2'-bipyridine ligand and one water molecule, displaying a distorted trigonal–bipyramidal geometry. The crystal structure is stabilized by intra- and intermolecular O–H···O and intermolecular C–H···Cl hydrogen bonds.

Related literature

For related literature, see: Brownless *et al.* (1999); Lemoine, Bendada & Viossat (2004); Lemoine, Viossat *et al.* (2004); Melnik *et al.* (2001); Wang *et al.* (2004); Wen *et al.* (2007*a,b*).

Experimental

Crystal data

$[Zn(C_7H_4ClO_3)_2(C_{10}H_8N_2)(H_2O)]$	$\gamma = 97.93 \ (2)^{\circ}$
$M_r = 582.67$	$V = 1180.8 (11) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 10.114 (5) Å	Mo Kα radiation
b = 11.141 (6) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 11.553 (6) Å	T = 293 (2) K
$\alpha = 112.72 \ (2)^{\circ}$	$0.52 \times 0.50 \times 0.47 \text{ mm}$
$\beta = 93.208 \ (19)^{\circ}$	

Data collection

```
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{min} = 0.511, T_{max} = 0.541
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.031 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.094 & \text{independent and constrained} \\ S &= 1.11 & \text{refinement} \\ 4865 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.28 \text{ e} \text{ Å}^{-3} \\ 337 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.63 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Zn1-O4	1.9863 (17)	Zn1-N2	2.104 (2)
Zn1-O7	2.0507 (17)	Zn1-N1	2.1514 (19)
Zn1-O1	2.0715 (17)		
O4-Zn1-O7	113.87 (7)	O1-Zn1-N2	89.69 (7)
O4-Zn1-O1	96.40 (7)	O4-Zn1-N1	103.25 (8)
O7-Zn1-O1	88.52 (7)	O7-Zn1-N1	90.52 (7)
O4-Zn1-N2	109.12 (7)	O1-Zn1-N1	158.89 (7)
O7-Zn1-N2	136.91 (7)	N2-Zn1-N1	76.73 (7)

10689 measured reflections

 $R_{\rm int} = 0.023$

4865 independent reflections

4269 reflections with $I > 2\sigma(I)$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 07 - H7B \cdots 02 \\ 07 - H7A \cdots 06^{i} \\ 03 - H3B \cdots 02 \\ 06 - H6B \cdots 05 \\ C16 - H16A \cdots C12^{ii} \end{array}$	0.82 (1) 0.82 (1) 0.82 (3) 0.82 (3) 0.93	1.85 (1) 1.98 (1) 1.78 (2) 1.74 (2) 2.79	2.640 (2) 2.786 (3) 2.516 (3) 2.498 (3) 3.552 (3)	160 (2) 171 (2) 148 (3) 152 (2) 140

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x + 1, y, z.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the Education Department of Fujian Province (grant No. JA02261) and Longyan Science and Technology Bureau (grant No. 2003LY03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2079).

References

- Brownless, N. J., Edwards, D. A. & Mahon, M. F. (1999). Inorg. Chim. Acta, 287, 89–94.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Lemoine, P., Bendada, K. & Viossat, B. (2004). Acta Cryst. C60, m489–m491. Lemoine, P., Viossat, B., Dung, N. H., Tomas, A., Morgant, G., Greenaway, F. T. & Sorenson, J. R. J. (2004). J. Inorg. Biochem. 98, 1734–1749.

Melnik, M., Koman, M., Moncol, J. & Glowiak, T. (2001). J. Coord. Chem. 53, 173–177.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.

Wang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. C60, m479–m481. Wen, D.-C., Liu, S.-X. & Ribas, J. (2007a). Inorg. Chem. Commun. 10, 661– 665.

Wen, D.-C., Liu, S.-X. & Ribas, J. (2007b). Polyhedron, 26, 3849-3856.

Acta Cryst. (2007). E63, m2446-m2447 [doi:10.1107/S1600536807042316]

Aqua(2,2'-bipyridine- $\kappa^2 N, N'$)bis(5-chlorosalicylato- κO)zinc(II)

D. Wen, H. Ta, C. Zhong, T. Xie and L. Wu

Comment

Metal salicylate complexes are of current interest owing to their intriguing structural features and biological applications (Brownless *et al.*, 1999; Lemoine, Bendada & Viossat, 2004; Lemoine, Viossat *et al.*, 2004; Wang *et al.*, 2004; Wen *et al.*, 2007*a*,b). We report here the structure of a zinc(II) complex with 5-chlorosalicylate ligand (Melnik *et al.*, 2001).

The title complex was synthesized under hydrothermal conditions. The Zn^{II} atom is coordinated in a distorted trigonal bipyramidal geometry by two O atoms from two 5-chlorosalicylate ligands, two N atoms from a 2,2'-bipyridine ligand and one water O atom (Fig. 1 and Table 1). The water molecule, hydroxyl groups and the uncoordinated carboxylate oxygen atoms form intra- and intermolecular O—H···O hydrogen bonds while the 2,2'-bipyridine ligand forms an intermolecular C—H···Cl hydrogen bond with the Cl atom of a 5-chlorosalicylate ligand (Table 2), generating an extended chain architecture along the *a* axis (Fig. 2). The crystal structure is stabilized by the O—H···O and C—H···Cl hydrogen bonds.

Experimental

A mixture of $Zn(NO_3)_2$ ·6H₂O (0.030 g, 0.1 mmol), 2,2'-bipyridine (0.016 g, 0.1 mmol), 5-chlorosalicylic acid (0.035 g, 0.2 mmol) and distilled water (10 ml) was put into a 20 ml Teflon-lined autoclave and then heated at 413 K for 48 h. Yellow block-like crystals of the title compound suitable for X-ray analysis were collected from the reaction mixture.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecule and hydroxyl groups were found in a difference Fourier map and refined with a distance restraint of O—H = 0.82 (1)Å and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compoud. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the extended hydrogen-bonding (dashed lines) chain along the *a* axis.

Aquabis(5-chlorosalicylato- κO)(2,2'-bipyridine- $\kappa^2 N$,N')zinc(II)

Crystal data	
$[Zn(C_7H_4ClO_3)_2(C_{10}H_8N_2)(H_2O)]$	Z = 2
$M_r = 582.67$	$F_{000} = 592$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.639 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.114 (5) Å	Cell parameters from 4865 reflections
b = 11.141 (6) Å	$\theta = 3.1 - 26.5^{\circ}$
c = 11.553 (6) Å	$\mu = 1.32 \text{ mm}^{-1}$
$\alpha = 112.72 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 93.208 \ (19)^{\circ}$	Block, yellow
$\gamma = 97.93 \ (2)^{\circ}$	$0.52 \times 0.50 \times 0.47 \text{ mm}$
$V = 1180.8 (11) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	4865 independent reflections
Radiation source: rotation anode	4269 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 293(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -12 \rightarrow 12$
$T_{\min} = 0.511, \ T_{\max} = 0.541$	$k = -13 \rightarrow 13$
10689 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_0^2) + (0.0575P)^2 + 0.1147P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
4865 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$

337 parameters4 restraints

$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$	
--	--

Extinction correction: none

Primary atom site location: structure-invariant direct methods

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.93725 (2)	0.88977 (2)	0.26799 (2)	0.03437 (9)
N1	1.07977 (17)	0.94611 (18)	0.15880 (17)	0.0397 (4)
N2	0.92448 (17)	1.08927 (17)	0.31238 (16)	0.0377 (4)
01	0.84114 (15)	0.89774 (15)	0.42384 (14)	0.0427 (3)
02	0.86926 (16)	0.70100 (16)	0.41829 (16)	0.0491 (4)
03	0.7135 (2)	0.58124 (18)	0.51632 (19)	0.0605 (5)
H3B	0.781 (2)	0.599 (3)	0.486 (3)	0.073*
O4	0.78536 (14)	0.77602 (14)	0.13849 (13)	0.0398 (3)
O5	0.92178 (15)	0.63737 (17)	0.04523 (16)	0.0528 (4)
O6	0.83933 (18)	0.4330 (2)	-0.14905 (18)	0.0645 (5)
H6B	0.889 (3)	0.489 (3)	-0.088 (2)	0.077*
07	1.06808 (15)	0.78652 (16)	0.31565 (14)	0.0431 (3)
H7B	1.019 (2)	0.749 (2)	0.351 (2)	0.052*
H7A	1.098 (2)	0.7280 (19)	0.2633 (18)	0.052*
C1	0.70639 (19)	0.8041 (2)	0.53918 (18)	0.0356 (4)
C2	0.6614 (2)	0.6930 (2)	0.5648 (2)	0.0424 (5)
C3	0.5595 (3)	0.6961 (3)	0.6410 (2)	0.0548 (6)
H3A	0.5278	0.6216	0.6560	0.066*
C4	0.5055 (3)	0.8082 (3)	0.6941 (2)	0.0558 (6)
H4A	0.4387	0.8105	0.7466	0.067*
C5	0.5500 (2)	0.9180 (2)	0.6698 (2)	0.0466 (5)
C6	0.6491 (2)	0.9165 (2)	0.59318 (19)	0.0404 (4)
H6A	0.6782	0.9910	0.5773	0.049*
C7	0.81292 (19)	0.8010 (2)	0.45482 (18)	0.0360 (4)
C8	0.6974 (2)	0.58857 (19)	-0.04858 (18)	0.0341 (4)
C9	0.7182 (2)	0.4718 (2)	-0.1443 (2)	0.0428 (5)
C10	0.6134 (3)	0.3919 (2)	-0.2364 (2)	0.0532 (6)
H10A	0.6279	0.3143	-0.3000	0.064*
C11	0.4887 (2)	0.4273 (2)	-0.2335 (2)	0.0496 (5)
H11A	0.4180	0.3732	-0.2942	0.060*
C12	0.4687 (2)	0.5434 (2)	-0.1404 (2)	0.0398 (5)
C13	0.5701 (2)	0.6234 (2)	-0.04767 (18)	0.0355 (4)
H13A	0.5541	0.7005	0.0156	0.043*
C14	0.8089 (2)	0.6724 (2)	0.05218 (19)	0.0364 (4)
C15	1.1575 (2)	0.8696 (2)	0.0834 (2)	0.0483 (5)
H15A	1.1523	0.7833	0.0771	0.058*
C16	1.2435 (3)	0.9120 (3)	0.0157 (2)	0.0550 (6)
H16A	1.2951	0.8554	-0.0364	0.066*
C17	1.2532 (3)	1.0403 (3)	0.0252 (3)	0.0587 (6)
H17A	1.3111	1.0720	-0.0203	0.070*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C18	1.1753 (3)	1.1200 (3)	0.1037 (2)	0.0540 (6)
H18A	1.1808	1.2072	0.1126	0.065*
C19	1.0892 (2)	1.0712 (2)	0.16902 (19)	0.0376 (4)
C20	1.0020 (2)	1.1516 (2)	0.25444 (19)	0.0386 (4)
C21	0.9986 (3)	1.2815 (2)	0.2744 (2)	0.0517 (6)
H21A	1.0529	1.3231	0.2336	0.062*
C22	0.9138 (3)	1.3490 (2)	0.3554 (3)	0.0565 (6)
H22A	0.9101	1.4364	0.3695	0.068*
C23	0.8360 (3)	1.2871 (3)	0.4143 (2)	0.0553 (6)
H23A	0.7785	1.3315	0.4693	0.066*
C24	0.8430 (2)	1.1564 (2)	0.3917 (2)	0.0471 (5)
H24A	0.7898	1.1142	0.4326	0.057*
Cl1	0.47871 (7)	1.05894 (8)	0.73805 (8)	0.0718 (2)
Cl2	0.31025 (6)	0.58675 (7)	-0.14145 (7)	0.06070 (18)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03880 (14)	0.02641 (14)	0.03341 (14)	0.00365 (9)	0.00601 (9)	0.00750 (10)
N1	0.0443 (9)	0.0303 (9)	0.0408 (9)	0.0028 (7)	0.0071 (8)	0.0112 (8)
N2	0.0434 (9)	0.0299 (9)	0.0340 (8)	0.0064 (7)	-0.0002 (7)	0.0073 (7)
01	0.0515 (8)	0.0353 (8)	0.0426 (8)	0.0099 (7)	0.0167 (7)	0.0146 (7)
O2	0.0550 (9)	0.0390 (9)	0.0560 (9)	0.0161 (7)	0.0201 (8)	0.0174 (8)
O3	0.0731 (11)	0.0379 (9)	0.0780 (13)	0.0130 (9)	0.0271 (10)	0.0275 (9)
O4	0.0433 (7)	0.0306 (8)	0.0355 (7)	0.0023 (6)	0.0017 (6)	0.0041 (6)
O5	0.0399 (8)	0.0440 (9)	0.0578 (10)	0.0066 (7)	0.0012 (7)	0.0034 (8)
O6	0.0549 (10)	0.0540 (12)	0.0600 (11)	0.0229 (9)	0.0037 (8)	-0.0077 (9)
O7	0.0492 (8)	0.0423 (9)	0.0363 (8)	0.0156 (7)	0.0107 (6)	0.0106 (7)
C1	0.0369 (9)	0.0338 (11)	0.0293 (9)	0.0018 (8)	0.0026 (8)	0.0069 (8)
C2	0.0481 (11)	0.0356 (12)	0.0407 (11)	0.0017 (9)	0.0040 (9)	0.0142 (10)
C3	0.0602 (14)	0.0522 (15)	0.0551 (14)	-0.0001 (12)	0.0142 (12)	0.0269 (13)
C4	0.0524 (13)	0.0661 (17)	0.0497 (13)	0.0079 (12)	0.0203 (11)	0.0227 (13)
C5	0.0452 (11)	0.0474 (13)	0.0413 (11)	0.0094 (10)	0.0110 (9)	0.0101 (10)
C6	0.0444 (10)	0.0355 (11)	0.0377 (10)	0.0043 (9)	0.0054 (9)	0.0114 (9)
C7	0.0387 (9)	0.0312 (10)	0.0306 (9)	0.0034 (8)	0.0010 (8)	0.0054 (8)
C8	0.0419 (10)	0.0263 (10)	0.0310 (9)	0.0020 (8)	0.0050 (8)	0.0093 (8)
C9	0.0495 (11)	0.0350 (11)	0.0381 (11)	0.0103 (9)	0.0053 (9)	0.0073 (9)
C10	0.0682 (15)	0.0366 (12)	0.0392 (12)	0.0078 (11)	0.0000 (11)	-0.0004 (10)
C11	0.0575 (13)	0.0400 (13)	0.0406 (11)	-0.0027 (10)	-0.0085 (10)	0.0101 (10)
C12	0.0426 (10)	0.0389 (12)	0.0409 (11)	0.0030 (9)	0.0002 (9)	0.0212 (10)
C13	0.0468 (10)	0.0267 (10)	0.0335 (9)	0.0056 (8)	0.0059 (8)	0.0125 (8)
C14	0.0409 (10)	0.0293 (10)	0.0365 (10)	0.0013 (8)	0.0037 (8)	0.0123 (9)
C15	0.0535 (12)	0.0359 (12)	0.0534 (13)	0.0081 (10)	0.0164 (11)	0.0142 (11)
C16	0.0569 (13)	0.0534 (16)	0.0537 (14)	0.0105 (12)	0.0177 (11)	0.0183 (12)
C17	0.0669 (15)	0.0567 (16)	0.0599 (15)	0.0043 (13)	0.0217 (13)	0.0313 (14)
C18	0.0712 (16)	0.0422 (13)	0.0548 (14)	0.0070 (12)	0.0135 (12)	0.0260 (12)
C19	0.0429 (10)	0.0323 (10)	0.0335 (10)	0.0011 (8)	-0.0015 (8)	0.0114 (9)
C20	0.0451 (10)	0.0309 (10)	0.0351 (10)	0.0042 (8)	-0.0050 (8)	0.0100 (9)

C21	0.0657 (14)	0.0351 (12)	0.0545 (13)	0.0076 (10)	0.0021 (12)	0.0193 (11)
C22	0.0676 (15)	0.0347 (12)	0.0640 (16)	0.0169 (11)	-0.0013 (13)	0.0146 (12)
C23	0.0587 (13)	0.0440 (14)	0.0558 (14)	0.0225 (11)	0.0017 (12)	0.0080 (12)
C24	0.0494 (12)	0.0400 (13)	0.0459 (12)	0.0118 (10)	0.0050 (10)	0.0095 (10)
Cl1	0.0735 (4)	0.0640 (4)	0.0754 (5)	0.0299 (4)	0.0333 (4)	0.0159 (4)
Cl2	0.0481 (3)	0.0614 (4)	0.0732 (4)	0.0105 (3)	-0.0080 (3)	0.0291 (3)
Geometric paran	neters (Å, °)					
Zn1—O4		1.9863 (17)	C6—1	H6A	0.9300)
Zn1—O7		2.0507 (17)	C8—	C13	1.394	(3)
Zn1—O1		2.0715 (17)	C8—	С9	1.396	(3)
Zn1—N2		2.104 (2)	C8—	C14	1.490	(3)
Zn1—N1		2.1514 (19)	С9—	C10	1.389	(3)
N1—C15		1.339 (3)	C10–	-C11	1.371	(4)
N1-C19		1.342 (3)	C10–	-H10A	0.9300)
N2—C24		1.342 (3)	C11–	-C12	1.376	(3)
N2—C20		1.346 (3)	C11–	-H11A	0.9300)
O1—C7		1.263 (3)	C12-	-C13	1.371	(3)
O2—C7		1.258 (2)	C12–	-C12	1.736	(2)
O3—C2		1.348 (3)	C13–	-H13A	0.9300)
O3—H3B		0.82 (3)	C15–	-C16	1.356	(3)
O4—C14		1.264 (3)	C15–	-H15A	0.9300)
O5—C14		1.254 (2)	C16–	-C17	1.380	(4)
O6—C9		1.351 (3)	C16–	-H16A	0.9300)
O6—H6B		0.82 (3)	C17—	-C18	1.372	(4)
O7—H7B		0.826 (10)	C17—	-H17A	0.9300)
O7—H7A		0.810 (10)	C18–	-C19	1.372	(3)
C1—C6		1.389 (3)	C18–	-H18A	0.9300)
C1—C2		1.403 (3)	C19–	-C20	1.479	(3)
C1—C7		1.488 (3)	C20–	-C21	1.380	(3)
C2—C3		1.389 (3)	C21–	-C22	1.379	(4)
C3—C4		1.367 (4)	C21–	-H21A	0.9300)
С3—НЗА		0.9300	C22–	-C23	1.352	(4)
C4—C5		1.380 (4)	C22–	-H22A	0.9300)
C4—H4A		0.9300	C23–	-C24	1.389	(3)
C5—C6		1.372 (3)	C23–	-H23A	0.9300)
C5—CII		1.740 (2)	C24—	-H24A	0.9300)
O4—Zn1—O7		113.87 (7)	O6—	С9—С8	121.2	(2)
O4—Zn1—O1		96.40 (7)	C10–	-C9C8	120.3	(2)
O7—Zn1—O1		88.52 (7)	C11–	-C10C9	120.0	(2)
O4—Zn1—N2		109.12 (7)	C11–	-C10—H10A	120.0	
O7—Zn1—N2		136.91 (7)	C9—	С10—Н10А	120.0	
O1—Zn1—N2		89.69 (7)	C10–	-C11C12	119.7	(2)
04—Zn1—N1		103.25 (8)	C10-	-C11—H11A	120.2	
07—Zn1—N1		90.52 (7)	C12–	-C11—H11A	120.2	
Ol—Znl—Nl		158.89 (7)	C13–	-C12C11	121.4	(2)
N2—Zn1—N1		76.73 (7)	C13–	-C12Cl2	120.20) (17)
C15—N1—C19		118.18 (19)	C11-	-C12—Cl2	118.42	2 (17)

C15—N1—Zn1	126.70 (15)	C12—C13—C8	119.75 (19)
C19—N1—Zn1	115.13 (14)	C12—C13—H13A	120.1
C24—N2—C20	118.58 (19)	C8—C13—H13A	120.1
C24—N2—Zn1	124.50 (16)	O5—C14—O4	123.54 (19)
C20—N2—Zn1	116.90 (14)	O5—C14—C8	118.04 (18)
C7—O1—Zn1	124.19 (13)	O4—C14—C8	118.40 (17)
С2—О3—Н3В	106 (2)	N1-C15-C16	123.1 (2)
C14—O4—Zn1	117.68 (13)	N1—C15—H15A	118.4
С9—О6—Н6В	106 (2)	С16—С15—Н15А	118.4
Zn1—O7—H7B	100.3 (17)	C15—C16—C17	119.0 (2)
Zn1—O7—H7A	122.6 (18)	C15—C16—H16A	120.5
H7B—O7—H7A	105 (3)	C17—C16—H16A	120.5
C6—C1—C2	118.89 (19)	C18—C17—C16	118.3 (2)
C6—C1—C7	120.63 (19)	C18—C17—H17A	120.9
C2—C1—C7	120.48 (19)	C16—C17—H17A	120.9
O3—C2—C3	118.2 (2)	C19—C18—C17	120.1 (2)
O3—C2—C1	121.9 (2)	C19-C18-H18A	120.0
C3—C2—C1	119.9 (2)	C17—C18—H18A	120.0
C4—C3—C2	120.2 (2)	N1—C19—C18	121.3 (2)
С4—С3—НЗА	119.9	N1—C19—C20	115.92 (18)
С2—С3—НЗА	119.9	C18—C19—C20	122.8 (2)
C3—C4—C5	120.1 (2)	N2-C20-C21	121.5 (2)
C3—C4—H4A	119.9	N2-C20-C19	115.30 (18)
С5—С4—Н4А	119.9	C21—C20—C19	123.2 (2)
C6—C5—C4	120.6 (2)	C22—C21—C20	119.3 (2)
C6—C5—C11	120.34 (19)	C22—C21—H21A	120.4
C4—C5—Cl1	119.05 (18)	C20-C21-H21A	120.4
C5—C6—C1	120.3 (2)	C23—C22—C21	119.5 (2)
С5—С6—Н6А	119.9	C23—C22—H22A	120.2
С1—С6—Н6А	119.9	C21—C22—H22A	120.2
O2—C7—O1	123.97 (19)	C22—C23—C24	119.2 (2)
O2—C7—C1	117.45 (19)	С22—С23—Н23А	120.4
O1—C7—C1	118.57 (18)	С24—С23—Н23А	120.4
C13—C8—C9	118.82 (19)	N2—C24—C23	121.9 (2)
C13—C8—C14	120.88 (18)	N2—C24—H24A	119.1
C9—C8—C14	120.28 (18)	C23—C24—H24A	119.1
O6—C9—C10	118.4 (2)		
O4—Zn1—N1—C15	-74.08 (19)	C14—C8—C9—O6	-0.9 (3)
O7—Zn1—N1—C15	40.62 (19)	C13—C8—C9—C10	-0.3 (3)
O1—Zn1—N1—C15	127.8 (2)	C14—C8—C9—C10	178.3 (2)
N2—Zn1—N1—C15	179.06 (19)	O6—C9—C10—C11	179.2 (2)
O4—Zn1—N1—C19	105.74 (15)	C8—C9—C10—C11	-0.1 (4)
O7—Zn1—N1—C19	-139.56 (15)	C9—C10—C11—C12	1.1 (4)
O1—Zn1—N1—C19	-52.3 (2)	C10-C11-C12-C13	-1.8 (4)
N2—Zn1—N1—C19	-1.13 (14)	C10-C11-C12-Cl2	178.80 (19)
O4—Zn1—N2—C24	80.39 (18)	C11—C12—C13—C8	1.4 (3)
O7—Zn1—N2—C24	-103.76 (18)	Cl2—C12—C13—C8	-179.18 (15)
O1—Zn1—N2—C24	-16.27 (17)	C9—C8—C13—C12	-0.4 (3)
N1—Zn1—N2—C24	-179.96 (18)	C14—C8—C13—C12	-178.97 (18)

O4—Zn1—N2—C20	-98.18 (15)	Zn1—O4—C14—O5	0.9 (3)
O7—Zn1—N2—C20	77.67 (17)	Zn1—O4—C14—C8	-177.68 (13)
O1—Zn1—N2—C20	165.16 (14)	C13—C8—C14—O5	-178.77 (19)
N1—Zn1—N2—C20	1.47 (14)	C9—C8—C14—O5	2.7 (3)
O4—Zn1—O1—C7	69.96 (17)	C13—C8—C14—O4	-0.1 (3)
O7—Zn1—O1—C7	-43.90 (17)	C9—C8—C14—O4	-178.68 (19)
N2—Zn1—O1—C7	179.16 (16)	C19—N1—C15—C16	-1.0 (3)
N1—Zn1—O1—C7	-131.49 (19)	Zn1—N1—C15—C16	178.78 (19)
O7—Zn1—O4—C14	-35.97 (16)	N1-C15-C16-C17	0.7 (4)
O1—Zn1—O4—C14	-127.18 (15)	C15-C16-C17-C18	0.2 (4)
N2-Zn1-O4-C14	140.92 (14)	C16—C17—C18—C19	-0.8 (4)
N1—Zn1—O4—C14	60.59 (16)	C15—N1—C19—C18	0.4 (3)
C6—C1—C2—O3	-179.4 (2)	Zn1-N1-C19-C18	-179.41 (17)
C7—C1—C2—O3	1.0 (3)	C15—N1—C19—C20	-179.48 (18)
C6—C1—C2—C3	1.3 (3)	Zn1—N1—C19—C20	0.7 (2)
C7—C1—C2—C3	-178.3 (2)	C17-C18-C19-N1	0.5 (4)
O3—C2—C3—C4	178.8 (2)	C17—C18—C19—C20	-179.6 (2)
C1—C2—C3—C4	-1.9 (4)	C24—N2—C20—C21	-0.4 (3)
C2—C3—C4—C5	1.5 (4)	Zn1—N2—C20—C21	178.29 (16)
C3—C4—C5—C6	-0.4 (4)	C24—N2—C20—C19	179.77 (18)
C3—C4—C5—Cl1	179.7 (2)	Zn1—N2—C20—C19	-1.6 (2)
C4—C5—C6—C1	-0.2 (3)	N1-C19-C20-N2	0.6 (3)
Cl1—C5—C6—C1	179.72 (16)	C18—C19—C20—N2	-179.3 (2)
C2—C1—C6—C5	-0.2 (3)	N1-C19-C20-C21	-179.3 (2)
C7—C1—C6—C5	179.32 (19)	C18-C19-C20-C21	0.8 (3)
Zn1—O1—C7—O2	20.1 (3)	N2-C20-C21-C22	-0.1 (3)
Zn1—O1—C7—C1	-159.64 (13)	C19—C20—C21—C22	179.8 (2)
C6—C1—C7—O2	173.64 (19)	C20-C21-C22-C23	0.3 (4)
C2—C1—C7—O2	-6.8 (3)	C21—C22—C23—C24	-0.1 (4)
C6—C1—C7—O1	-6.6 (3)	C20—N2—C24—C23	0.6 (3)
C2-C1-C7-O1	172.97 (19)	Zn1—N2—C24—C23	-177.97 (17)
С13—С8—С9—Об	-179.5 (2)	C22—C23—C24—N2	-0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O7—H7B…O2	0.82 (1)	1.85 (1)	2.640 (2)	160 (2)
O7—H7A···O6 ⁱ	0.82 (1)	1.98 (1)	2.786 (3)	171 (2)
O3—H3B…O2	0.82 (3)	1.78 (2)	2.516 (3)	148 (3)
O6—H6B…O5	0.82 (3)	1.74 (2)	2.498 (3)	152 (2)
C16—H16A···Cl2 ⁱⁱ	0.93	2.79	3.552 (3)	140
Symmetry codes: (i) $-x+2, -y+1, -z$; (ii) $x+1, y, z$.				

